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Renormalization in the Hénon Family, I: Universality
But Non-Rigidity∗
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In this paper geometric properties of infinitely renormalizable real Hénon-like
maps F in R

2 are studied. It is shown that the appropriately defined renormal-
izations RnF converge exponentially to the one-dimensional renormalization
fixed point. The convergence to one-dimensional systems is at a super-exponen-
tial rate controlled by the average Jacobian and a universal function a(x). It is
also shown that the attracting Cantor set of such a map has Hausdorff dimen-
sion less than 1, but contrary to the one-dimensional intuition, it is not rigid,
does not lie on a smooth curve, and generically has unbounded geometry.

1. INTRODUCTION

Since the universality discoveries, made in the mid-1970s by Feigenbaum
(11, 12) and, independently, by Coullet and Tresser (8, 25), these funda-
mental phenomena have attracted a great deal of attention from mathe-
maticians, pure and applied, and physicists (see ref. 9 for a representative
sample of theoretical and experimental articles in early 1980s on the sub-
ject). However, a rigorous study of these phenomena has been surprisingly
difficult and technically sophisticated and so far has only been thoroughly
carried out in the case of one-dimensional maps, on the interval or the cir-
cle, with one critical point (see refs. 13, 16, 18, 19, 24, 26, 27 and refer-
ences therein).

Rigorous exploration of universality for dissipative two-dimensional
systems was begun in the article by Collet et al. (6,7). It is shown in this
article that the one-dimensional renormalization fixed point f∗ is also a
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hyperbolic fixed point for nearby dissipative two-dimensional maps: this
explained (at least, at the physical level) parameter universality observed
in families of such systems. A subsequent paper by Gambaudo, van
Strien and Tresser (14) demonstrates that, similarly to the one-dimensional
situation, infinitely renormalizable two-dimensional maps which are close
to f∗ have an attracting Cantor set O on which the map acts as the
adding machine. However, the geometry of these Cantor sets and global
topology of the maps in question have not yet received an adequate deal
of attention.

In this paper we begin a more systematic study of the geometry of infi-
nitely renormalizable dissipative two-dimensional dynamical systems.4 What
we have discovered is that for these maps universality features (some of
which have specific two-dimensional nature) can coexist with unbounded
geometry and lack of rigidity (which make them quite different from the
familiar one-dimensional counterparts).

We consider a class H of Hénon-like maps of the form

F : (x, y) �→ (f (x)− ε(x, y), x),

where f (x) is a unimodal map subject of certain regularity assumptions,
and ε is small. If f is renormalizable then the renormalization of F is
defined as RF =H−1 ◦ (F 2|U) ◦H , where U is a certain neighborhood of
the “critical value” v= (f (0),0) and H is an explicit non-linear change of
variables (Section 3.5).5

It is shown that the degenerate map F∗(x, y) := (f∗(x), x), where f∗
is the fixed point of the one-dimensional renormalization operator, is a
hyperbolic fixed point for R with a one-dimensional unstable manifold
(consisting of one-dimensional maps) and that the renormalizations RnF
of infinitely renormalizable maps converge at a super-exponential rate
toward the space of unimodal maps (Theorems 4.1 and 4.3). For any infi-
nitely renormalizable map F of class H there exists a hierarchical family
of pieces {Bnσ },2n on each level, organized by inclusion in the dyadic tree,
such that

O=OF =
⋂

n

⋃

σ

Bnσ

4Here only period-doubling renormalization will be considered and we will refer to it simply
as “renormalization.”

5The set-up in this article is different from that of ref. 7: a different normalization of Hénon-
like maps is used, and renormalization is done near the “critical value” rather than the
“critical point” using a nonlinear change of variable. We found the theory quite sensitive to
specific choices such as these.
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is a Cantor set on which F acts as the adding machine(Corollary 5.5).
This recasts the results of refs. 7, 14 in our setting.

Furthermore, the diameters of the pieces Bnσ shrink at least
exponentially with rate O(λ−n), where λ=2.6 . . . is the universal scaling fac-
tor of one-dimensional renormalization (Lemma 5.1). This implies that

HD(O)< log 2/ logλ<1,

which makes it possible to control distortion of the renormalizations
(Lemma 6.1). Ultimately, this leads to the following asymptotic formula
for the renormalizations (Theorem 7.9):

RnF(x, y)= (fn(x)− b2n a(x) y (1+O(ρn)), x ),

where fn→f∗ exponentially fast,

b=bF = exp
∫

O
log JacF dµ

is the average Jacobian of F (here µ is the unique invariant measure on
O and the Jacobian is the absolute value of the determinant), ρ ∈ (0,1),
and a(x) is a universal function. This is a new universality feature of two-
dimensional dynamics: as f∗ controls the zeroth order shape of the renor-
malizations, a(x) gives the first order control.

On the other hand, we will show in the second half of the paper
that there are some striking differences between the one- and two-dimen-
sional situations (Sections 8–11). For example, the Cantor set O is not rigid
(Theorem 10.1). Indeed, if the average Jacobians of F and G are differ-
ent, say bF <bG, then a conjugacy h : OF→OG does not admit a smooth
extension to R

2: there is a definite upper bound

α� 1
2

(
1+ log bG

log bF

)
<1

on the Hölder exponent of h. Thus, in dimension two, universality and
rigidity phenomena do not necessarily coexist. The above estimate on the
Hölder exponent of the conjugation also applies to degenerate (i.e., one-
dimensional) maps F giving the upper bound 1/2 on the Hölder exponent
of h.
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Remark 1.1. One can compare this non-rigidity phenomenon with
non-rigidity of circle maps. In 1961 Arnold constructed an analytic diffe-
omorphism of the circle with irrational rotation number whose conjuga-
tion with the corresponding rigid rotation is not absolutely continuous,
see refs. 1, 15. However, this phenomenon is quite different from the one
discussed here as it is related to the unbounded combinatorics (Liouville
rotation number) of the circle diffeomorphism in question.

It was even more surprising to us that generically the Cantor set O
does not have bounded geometry and so is not quasiconformally equiva-
lent to the standard Cantor set (Theorem 11.1).6 Even worse, the Cantor
sets of generic infinitely renormalizable Hénon-like maps have unbounded
geometry in some places, but in some other places they have a univer-
sal bounded geometry which is similar to their one-dimensional counter-
parts. (For instance, around the tip we always recover the universal scaling
factor.).

These properties, so different from their one-dimensional counter-
parts, come from a tilting and bending phenomenon: near the “tip” of
Hénon-like maps renormalization boxes are not rectangles but rather
slightly tilted and bent parallelograms. This tilt significantly affects the
b-scale geometry of O. Since the Jacobian b is replaced with b2n under
the n-fold renormalization, the geometry gets affected at arbitrarily small
scales. These phenomena are explored in Sections 10, 11 and 12.

The bent of the boxes forces us to use non-affine change of variables
to make renormalizations converge to a universal limit. However, we show
in Theorem 8.2 that appropriate quadratic changes of coordinates would
be sufficient. The renormalization limit obtained by this means would not
correspond to the fixed point of the usual renormalization around the crit-
ical point, but rather to the one around the critical value.

In Section 9 we show that a non-degenerate Hénon-like map in ques-
tion does not have continuous invariant line fields on the Cantor set O
(Corollary 9.4). It implies that contrary to the “rigidity intuition”, the
Cantor set O does not lie on a smooth curve (Theorem 9.7). It also
implies that the SL(2,R)-cocycle z �→DF(z)/

√
JacF(z) is non-uniformly

hyperbolic over the adding machine F :O→O (Theorem 9.6). It seems to
be previously unknown whether such cocycles exist.

On the positive side, as we show in the Theorem 12.1, the Cantor set
O has Hölder geometry in an appropriate meaning of this term.

6In fact, it seems to be quite a challenge to construct a single example of a Hénon map of
the class we consider whose Cantor set would have bounded geometry (see Problem 5 in
Section 13). It seems to go against the common intuition as one can find quite a few results
in the literature obtained under the assumption of bounded geometry, compare (10,21).
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In the forthcoming Part II, the global topological structure of
infinitely renormalizable Hénon maps will be discussed.

To conclude, it should be mentioned that intensive investigation of
stochastic attractors in the Hénon family has been carried out during
the past two decades by Benedicks, Carleson, Viana, Young, and others
(see refs. 3, 5, 28). This study has been concerned with stochastic maps
with positive entropy, which are very different from the zero entropy maps
studied here. We hope that, similarly to what has happened in the one-
dimensional theory, the renormalization point of view will shed new light
on stochastic phenomena as well.

2. GENERAL NOTATION AND TERMINOLOGY

Let (N={1,2, . . . },Z+=N∪{0}, Dr={z∈C : |z|<r} and I=[−1,1]⊂R.
A rectangle in R

2 or C
2 will mean a rectangle with vertical and horizontal

sides.
The letters x and y will be used not only for real variables but

also for their complexifications. The partial derivatives will be denoted by
∂x, ∂y, ∂

2
xx , etc.

For a smooth self-map F of R
2 or C

2, JacF stands for |detDF |.
The coordinate projections in R

2 or C
2 will be denoted by π1 and π2.

We let Fh and Fv be respectively the foliations by horizontal and vertical
real or complex lines in R

2 or C
2. A self-map of R

2 or C
2 is horizontal if

it preserves the horizontal foliation Fh.
A smooth map f of an interval is called unimodal if it has a single

critical point. In what follows, we will assume that all the unimodal maps
under consideration have a non-degenerate critical point and have negative
Schwarzian derivative, see ref. 22.

A self-map H of R
2 (from some family under consideration) is said

to have bounded nonlinearity if it may be represented as A◦�, where A is
affine and ‖�− id ‖C2 �K, where K is independent of the particular map
is question.

The notation “dist” will be used for different metrics in different
spaces, as long as there is no danger of confusion. The sup-norm in the
space Ac

	 of bounded holomorphic functions on 	⊂ C
n is denoted by

‖ · ‖	, or, if there is no danger of ambiguity, simply by ‖ · ‖. If 	 is sym-
metric with respect to the real subspace R

n,A	 stands for the real slice of
Ac
	 consisting of functions that are real on the real subspace.

A set X is called invariant under a map f if f (X)⊂X. A�B means
that A is compactly contained in B, i.e., the closure Ā is a compact subset
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of B. Notation Q1
Q2 means, as usual, that C−1 �Q1/Q2 �C for some
constant C>0.

For the reader’s convenience, more special notations are collected in
the Nomenclature

3. HÉNON RENORMALIZATION

In this section, after briefly recalling the main definitions of one-
dimensional renormalization, the class of Hénon-like maps is introduced
and renormalization for such maps is defined. First a renormalizable map
is defined and this definition parallels the one-dimensional definition: a
certain topological disk is invariant under the second iterate of the map.
To define the renormalization of the map, we consider the second iterate
restricted to the invariant disk and apply an appropriate nonlinear change
of coordinates in order to obtain a Hénon-like map of the same class.

3.1. Renormalization of Unimodal Maps

A unimodal map f : I→ I with critical point c∈ I is called renormal-
izable if there exists a closed interval J ⊂ int I containing the critical point
such that J ∩f (J )=∅ and f 2(J )⊂J . Then f 2 : J→J is a unimodal map.

We choose Jc= [f 4(c), f 2(c)] to be the smallest interval as above, and
call f 2 : Jc→Jc appropriately rescaled (to bring Jc back to the unit size) the
renormalization Rcf of f . This is the classical period-doubling renormaliza-
tion, and this is the only renormalization type discussed in this paper. How-
ever, we will also use the operator Rv in the discussion of period doubling
renormalization. It is defined as follows. Let Jv= [f 3(c), f (c)] be the small-
est closed interval invariant under f 2 which contains the critical value f (c),
and call f 2 : Jv→ Jv appropriately rescaled (to bring Jv back to the unit
size) the renormalization Rvf of f . The operator Rv renormalizes around
the “critical value ” and Rc around the “critical point”.

Let r ∈Z+∪{ω} and let U r denote the space of Cr -smooth unimodal
maps f : I→ I such that

(a) the critical point is mapped to 1 and 1 is mapped to −1 and

(b) there is a unique expanding fixed point α ∈ (−1,1) with negative
multiplier.

The subspace of renormalizable maps is denoted by U r0 , and the
renormalization operators Rc,Rv : U r0 → U r assign to each map their
renormalizations.
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For r � 3, the renormalization operator Rc has a unique fixed point
f∗ ∈ Uω0 . It satisfies the functional equation f∗ = λf 2∗ (λ−1x), where λ =
2.6 . . . is the universal scaling factor. We let σ =λ−1.

The fixed point f∗ is hyperbolic under the renormalization opera-
tor, with a codimension-one stable manifold Ws(f∗) consisting of infinitely
renormalizable maps. For details, see ref. 16 and references therein. The
operator Rv has also a unique fixed point f ∗ (see Lemma 2.4 of ref. 4).

3.2. Hénon-Like Maps

Consider two intervals, Ih and I v, and let B=Ih×I v. A smooth map
F : B→R

2 is called Hénon-like if it maps vertical sections of B to hori-
zontal arcs, while the horizontal sections are mapped to parabola-like arcs
(i.e., graphs of unimodal functions over the y-axis). Examples of Hénon-
like maps are given by small perturbations of unimodal maps of the form

F(x, y)= (f (x)− ε(x, y), x), (3.1)

where f : Ih→ Ih is unimodal and ε is small. Note that, in this case,

JacF =
∣∣∣∣
∂ε

∂y

∣∣∣∣ .

If ∂ε/∂y 
=0 then the vertical sections are mapped diffeomorphically onto
horizontal arcs, so that F is a diffeomorphism onto a “thickening” of the
graph �f = {(f (x), x)}x∈Ih (Fig. 1). In this case F is a diffeomorphism
onto its image which will be briefly called a Hénon-like diffeomorphism.

The classical Hénon family is obtained, up to affine normalization,
letting f (x) be a quadratic polynomial and ε(x, y)=by.

We will use the abbreviation F = (f − ε, x) for equation (3.1). Thus,
Ff = (f, x) denotes the degenerate Hénon-like map collapsing B onto
�f .7

7Usually, in particular in Section 7, it is more convenient to consider unimodal maps only
on their dynamical interval [f 2(c), f (c)]. However, without loss of generality we will assume
that the unimodal maps have an extension defined on a symmetric interval bounded by an
orientation preserving fixed point and a preimage. We also assume, again without loss of
generality, that all Hénon-like maps have an extension containing the regular saddle point
and its local stable manifold (compare Section 3.4).
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Fig. 1. A Hénon-like map.

3.3. Spaces of Maps

Let r ∈Z+ ∪ {ω}. The space of Cr -smooth Hénon-like maps F : B→
R

2 of the form (3.1) is denoted by Hr . Let U r be the space of unimodal
maps as defined above. In the real analytic case (r = ω), if U ⊂ C is a
neighborhood of I and κ > 0, then UU,κ ≡ UωU,κ denotes the subspace of
maps f ∈UU,κ with critical point c ∈ [−1,1− κ] which admit a holomor-
phic extension to U and can be factored as Q◦φ, where Q(x)=1−x2 and
φ is an R-symmetric univalent map on U . Since φ(c)= 0 and φ(1)=√2,
this space of univalent maps is normal, so that UU,κ is compact.8

Let 	h,	v⊂D2⊂C be neighborhoods of Ih, I v, respectively, and let
	=	h×	v ⊂C

2. Let H	≡Hω
	 stand for the class of Hénon-like maps

F ∈Hω of form (3.1) such that f ∈U	h and ε admits a holomorphic exten-
sion to 	. The subspace of maps F ∈H	 with ‖ε‖	� ε̄ will be denoted by
H	(ε̄). If f in (3.1) is fixed, we will also use the notation H	(f, ε̄).

Realizing a unimodal map f as a degenerate Hénon-like map Ff
yields an embedding of the space of unimodal maps U	h into the space
of Hénon-like maps H	 making it possible to think of U	h as a subspace
of H	.

8We fix once and for all a small κ >0 such that c∈ [−1,1−κ] for all maps of interest (like the
renormalization fixed point and the infinitely renormalizable quadratic map), and we will
suppress it from the notation.
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3.4. Renormalizable Hénon-Like Maps

An orientation preserving Hénon-like map is renormalizable if it has
two saddle fixed points – a regular saddle β0, with positive eigenvalues,
and a flip saddle β1, with negative eigenvalues – such that the unstable
manifold Wu(β0) intersects the stable manifold Ws(β1) at a single orbit
(Fig. 2).

For example, if f is a renormalizable unimodal map with both fixed
points repelling, then a small Hénon-like perturbation of type (3.1) is a
renormalizable Hénon-like map.

Given a renormalizable map F , consider an intersection point p0 ∈
Wu(β0) ∩ Ws(β1), and let pn = Fn(p0). Let D be the topological disk
bounded by the arcs of Ws(β1) and Wu(β0) with endpoints at p0 and p1.

Lemma 3.1. The disk D is invariant under F 2.

Proof. The boundary of D consists of two arcs, �s ⊂Ws(β1) and
�u ⊂ Wu(β0) both having p0 and p1 for endpoints. Because β1 is a
flip saddle, F 2(�s) � �s and there is a neighborhood U ⊃ �s with
F 2(U ∩D)⊂D. If F 2(D) were not contained in D then F 2(�u) would
have to intersect the boundary �u ∪ �s of D. The only possibility for this
to happen would be that F 2(�u) intersects �s \F 2(�s). By hypothesis, this
intersection consists of points in the orbit of p0. But this would yield a

Fig. 2. A renormalizable Hénon-like map.
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contradiction, since �s \F 2(�s) contains only two points of the orbit of p0,
namely p0 and p1, which are not in F 2(�u).

Definition 3.1 (Pre-renormalization). The map F 2|D is called a
pre-renormalization of F .

Assume now that F is a small perturbation (3.1) of a twice renorm-
alizable unimodal map. In this case, there is a preferred intersection point
p0 ∈ Ws(β1) ∩ Wu(β0). To define it, consider the local stable manifold
Ws

loc(β1), the component of the stable manifold Ws(β1)∩B containing β1.
If ε is sufficiently small, then Ws

loc(β1) is a nearly vertical smooth arc. Let
now p0 be the lowest intersection point of the unstable manifold Wu(β0)

with Ws
loc(β1), so that the arc of Wu(β0) between β0 and p0 does not

intersect Ws
loc(β1). This determines the preferred pre-renormalization F 2|D

of F .

3.5. The Hénon Renormalization Operator

We will now apply a carefully chosen non-linear horizontal change of
variables that will turn the pre-renormalization into a Hénon-like map of
form (3.1).

The pre-renormalization is not Hénon-like, since it does not map the
vertical foliation to the horizontal one. However, it is not far from it:

Lemma 3.2. Let f ∈U	h with critical point c and let U �	h � {c}
be an open set. There exist constants C and ε̄ > 0, depending only on
	 and U , such that for any F ∈H	(f, ε̄), the leaves of the foliation G=
F−2(Fh) in U×	v are graphs over sub-domains of 	v with vertical slope
bounded by C‖ JacF‖	.

Proof. Since U	h is a compact family of functions with a single crit-
ical point c 
∈ Ū , we have κ :=minx∈U |Df (x)|>0, where κ depends only on
	h. Letting r=dist(∂U, ∂	h), if ‖ε‖	< ε̄ :=κr/2, then

‖∂ε/∂x‖U×	v <κ/2. (3.2)

Since the foliation F−2(Fh) is given by the level sets

f (x)− ε(x, y)= const.

it follows from the Implicit Function Theorem and (3.2) that these
level sets are holomorphic graphs over sub-domains of 	v with slopes
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satisfying

∣∣∣∣
∂x

∂y

∣∣∣∣=
∣∣∣∣∣
∂ε

∂y

(
f ′(x)− ∂ε

∂x

)−1
∣∣∣∣∣�

2
κ

∣∣∣∣
∂ε

∂y

∣∣∣∣=
2
κ

JacF(x, y).

For U ′�U , let 	′ ⊂	 be the saturation of U ′ by the leaves of the foli-
ation G≡F−2(Fh), that is, 	′ is the union of all leaves of G that intersect
U ′.

Corollary 3.3. If U ′�U is an open set such that

dist(∂U ′, ∂U)>C‖ JacF‖diam	.

then the leaves of G that intersect U ′ are holomorphic graphs over 	v.

Select neighborhoods U ′�U �	h as above so that they contain the
interval [α,1] and f |U is an expanding diffeomorphism with bounded non-
linearity, with the bounds depending only on 	 and U . This is possible by
compactness of U	h and because unimodal maps with negative Schwarzian
derivative are expanding on the interval [α,1].

Lemma 3.4. Given U,U ′,	,	′,G as above, there exist ε̄ >0,C >0,
and a domain V � c with the following properties. Consider a Hénon-like
map F = (f − ε, x)∈H	(f, ε̄) and define the horizontal diffeomorphism

H(x, y)= (f (x)− ε(x, y), y). (3.3)

Then there exists a unimodal map g ∈UV such that ‖g− f 2‖V <Cε̄ and
G :=H ◦F 2 ◦H−1 is a Hénon-like map (x, y) �→ (g(x)− δ(x, y), x) of class
HV×	v with ‖δ‖V×	v �Cε̄2.

Proof. Notice first that if ε is sufficiently small, then all maps x �→
f (x)− ε(x, y) are diffeomorphisms on U for any y ∈	v. Hence H is a
diffeomorphism as well.

Let now

φy(x)=φ(x, y)=f (x)− ε(x, y) (3.4)

and

v(x)=−ε(x, f−1(x)).
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A straightforward calculation gives us the following Variational Formula:

H ◦F 2 ◦H−1(x, y)=φ(φ(x,φ−1
y (x)), x)

= (f 2(x)+v(f (x))+f ′(f (x))v(x)+O(‖ε‖2), x), (3.5)

which implies the assertion.

Remark 3.1. Note that v is the restriction of the vector field
−ε ∂/∂x to the graph �f , and v ◦ f + (f ′ ◦ f )v is the first variation of
f �→f 2 in the direction of v. Roughly speaking, the two-dimensional var-
iation of f �→f 2 in the direction of −ε coincides, to the first order, with
its one-dimensional variation in the direction of v =−ε|�f . In symbols:
δ−ε(H ◦F 2

f ◦H−1)=Fδvf 2 .

Remark 3.2. The residual term in (3.5) involves second derivatives
of ε, but in the holomorphic setting they are estimated by ‖ε‖.

Definition 3.2 (Renormalization). Let J be the minimal interval
such that J × I is invariant under G=H ◦F 2 ◦H−1, let s : J→ I be the
orientation-reversing affine rescaling, and let �(x, y)= (sx, sy). Then the
renormalization RF is defined as �◦G◦�−1 on the bidisk �(V ×	v).

In the case of a degenerate map Ff = (f, x) where f is a renormal-
izable unimodal map with critical point c, J = [f 4(c), f 2(c)] is the same
dynamical interval that we have used to define the period doubling renor-
malization for unimodal maps.

Let us summarize the above analysis:

Theorem 3.5. Given a domain 	⊃ I , there exist ε̄ >0,C >0, and a
neighborhood sV of I with the following properties. Let F = (f −ε, x) be
a renormalizable Hénon-like map of class H	(ε̄). Then the renormaliza-
tion RF is a Hénon-like map of class HW(g,Cε̄

2), where W =�(V ×	v)
and g is a unimodal map such that dist(Rcf, g)�Cε̄. The change of var-
iable �◦H conjugating F 2 (appropriately restricted) to RF is an expand-
ing map with bounded non-linearity, with all bounds depending only on
	 and ε̄.

Remark 3.1. Notice that if F is close to the renormalization fixed
point F∗(x)= (f∗(x), x) (see Section 3.1 and the next section), then the
conjugacy �◦H expands the infinitesimal l∞-norm at least by factor 2.6,
as λ=2.6 . . . is the dynamical scaling factor for the map f∗.
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4. HYPERBOLICITY OF THE HÉNON RENORMALIZATION

OPERATOR

In this section we show that the Hénon renormalization operator
defined above has a hyperbolic fixed point

F∗(x, y)= (f∗(x), x), (4.1)

where f∗ is the fixed point of the one-dimensional renormalization opera-
tor. We also show that, starting with an infinitely renormalizable Hénon-
like map F = (f − ε, x) with ε sufficiently small, the renormalizations
Rn(F ) converge super-exponentially fast to the subspace of degenerate
(one-dimensional) maps and converge exponentially fast to the fixed point
F∗. It follows that the local unstable manifold Wu(F∗) may be iden-
tified with the local unstable manifold Wu(f∗), of the one-dimensional
renormalization operator, contained in the space of unimodal maps, and
that the local stable manifold Ws(F∗) coincides with the set of infinitely
renormalizable Hénon-like maps close to F∗.

Let I	(ε̄) and I	(f, ε̄) denote the subspaces of infinitely renormal-
izable Hénon-like maps (including degenerate ones) of classes H	(ε̄) and
H	(f, ε̄) respectively.

Theorem 4.1. Given a domain 	, there is an ε̄ >0 with the follow-
ing property: for F ∈I	(f, ε̄), there exists a domain V ⊂	h containing I
and a sequence of unimodal maps gn ∈UV such that, for all n�0,

‖gn−f∗‖V �Cρn‖f −f∗‖V

and

‖RnF −Fgn‖W =O(ε̄2n),

where W = V ×	v and Fgn = (gn, x) is the degenerate Hénon-like map
associated to gn. All constants depend only on 	 and ε̄. The constant
ρ <1 is universal.

Proof. By the renormalization theory of unimodal maps, it is possi-
ble to find a domain V �	 containing I and a number N ∈N such that
for any N times renormalizable unimodal map f ∈UV the following holds:

(i) RNc f ∈UV and dist(RNc f, f∗)<(1/4)dist(f, f∗), where the distance
is associated with the norm ‖ · ‖V .
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It follows easily from the definition of the renormalization operator
and compactness of the space UV that

(ii) There exists an ε̄ >0 such that if F ∈IW(f, ε̄) for some unimodal
map f ∈UV , then f is N times renormalizable.

Take some δ > dist(f, f∗). Let ε̄ be so small that property (ii) holds
and Cε̄<min(1/2, δ/4), where C is the constant from Theorem 3.5 applied
to RN . Let g be a unimodal map approximating RNF as given by
Theorem 3.5. Then

dist(g, f∗) < dist(g,RNc f )+dist(RNc f, f∗)
< Cε̄+ (1/4)dist(f, f∗)<δ/2.

Moreover, RNF ∈HW(g,Cε̄
2)=HW(g, ε̄1) with

Cε̄1= (Cε̄)2<(1/4)(δ/2).

Hence it is possible to repeat the argument above with RNF in place of
F,g in place of f, δ/2 in place of δ, and ε1 in place of ε. In this way
we construct inductively a sequence of N -times renormalizable unimodal
maps gk ∈UV such that dist(gk, f∗)<δ/2k and dist(RNkF, gk)=O(ε̄2k ). The
conclusion follows.

By a standard trick (see, e.g., 23, Prop. 3.3), one can adapt the metric
‖ · ‖ to the dynamics in such a way that R becomes strongly contracting:

Lemma 4.2. There is a metric on I	(ε̄), equivalent to ‖ · ‖	, and
ρ ∈ (0,1) such that

dist(RF,F∗)�ρ dist(F,F∗)

for all F ∈I	(ε̄).
The space H	(ε̄) is naturally a real analytic Banach manifold mod-

eled on the space A	, with functions ε serving as local charts on
H	(f, ε̄). It is obvious from the definition that the renormalization oper-
ator R : H	(ε̄)→H	(ε̄) is real analytic.

By the unimodal renormalization theory, the fixed point f∗ is a qua-
dratic-like map on some domain 	∗ ⊂ C (see e.g, ref. 2 and references
therein). Moreover, f∗ is a hyperbolic fixed point of Rc in any space UV
with V �	∗,
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Theorem 4.3. Assume 	h � 	∗. Then the map F∗ is the hyper-
bolic fixed point for the Hénon renormalization operator R acting on H	,
with one-dimensional unstable manifold Wu(F∗) =Wu(f∗) contained in
the space of unimodal maps. Moreover, the differential DR(F∗) has van-
ishing spectrum on the quotient TH	/T U	h .

Proof. Let E = TH	/T U	h , and let A : E → E be the operator
induced by DR(F∗). Then Theorem 3.5 implies that ‖An‖=O(ε̄2n), and
hence spec(A)={0}.

Corollary 4.4. The set I	(ε̄) of infinitely renormalizable Hénon-like
maps coincides with the stable manifold

Ws(F∗)={F ∈H	(ε̄) : RnF→F∗ as n→∞},

which is a codimension-one real analytic submanifold in H	(ε̄).

Corollary 4.5. For all 	 and ε̄ as above, the intersection of I	(ε)
with the Hénon family

Fa,b : (x, y) �→ (fa(x)−by, x)

is a real analytic curve intersecting transversally the one-dimensional slice
b=0 at a∗, the parameter value for which fa∗ is infinitely renormalizable.

Proof. By the unimodal renormalization theory, the stable manifold
W(f∗)=Ws(F∗)∩U	 intersects transversally the quadratic family Q={fa}
at a single point, a∗. By the hyperbolicity of the unimodal renormalization
operator, Rn(Q) is close to Wu(f∗) for big n’s. Since Wu(f∗)=Wu(F∗),
the Rn(Q) are transverse to Ws(F∗) for big n’s as well. It follows that Q,
and hence the whole Hénon family, is transverse to Ws(F∗).

Let us finish this section with a complexification of the previous
results. Let Hc

	(f∗, ε̄) stand for the space of maps of form F = (f∗ −ε, x),
where f∗ ∈U	h is the unimodal renormalization fixed point and ε∈Ac

	 is
a holomorphic function on 	 (not necessarily real on the real line) with
‖ε‖	<ε̄. This neighborhood of F∗ has a natural complex structure inher-
ited from Ac

	, and the renormalization operator R extends to a holomor-
phic map on this space.

Theorem 4.6. The degenerate map F∗ is a hyperbolic fixed point
of the renormalization operator R acting on Hc

	(ε̄) with a codimension-
one holomorphic stable manifold Ic	(ε̄)≡Ws

c (F∗), the complexification of
I	(ε̄)=Ws(F∗).



626 De Carvalho et al.

The maps F ∈ Ic	 will still be called infinitely renormalizable
(complex) Hénon-like. Note that the renormalization of the complex maps
can be described geometrically in the same way as for real maps, that is, as
restriction of F 2 to an appropriate bidisk, conjugating it by a horizontal
map H (given by the same formula) and rescaling.

5. THE CRITICAL CANTOR SET

Here we begin the study of the attracting set for infinitely renormal-
izable Hénon-like maps. As in dimension one, it is a Cantor set on which
the map acts like the dyadic adding machine. We show that its Hausdorff
dimension is bounded from above by 0.73 and that it depends holomor-
phically on the map. We will see in Sections 10 and 11 that there are some
fundamental differences between these Cantor sets and their one-dimen-
sional counterparts.

Consider an infinitely renormalizable complex Hénon-like map F ∈
Ic	(ε̄), where 	 and ε̄ are selected so that the previous results apply.

5.1. Branches

Let �1
v ≡ φ1

v :=H−1 ◦�−1 be the change of variable conjugating the
renormalization RF to F 2 appropriately restricted, and let �1

c ≡φ1
c =F ◦

φ1
v . The subscripts v and c indicate that these maps are associated to the

critical value and the critical point, respectively.

Remark 5.1. Note that while the maps �1
v preserve the horizontal

foliation Fh, the maps �1
c preserve the vertical one, Fv. Indeed, by

definition (3.3), H maps F−1(Fv) to Fv. Hence

(�1
c)
−1(Fv)=�◦H(F−1(Fv))=Fv.

Similarly, let φ2
v and φ2

c be the corresponding changes of variable for
RF , let

�2
vv=φ1

v ◦φ2
v , �2

cv=φ1
c ◦φ2

v , �2
vc=φ1

v ◦φ2
c , . . . .

and, proceeding this way, construct, for any n=1,2, . . . , maps

�nw=φ1
w1
◦ · · · ◦φnwn, w= (w1, . . . ,wn)∈{v, c}n.

The notation �nw(F ) will also be used to emphasize dependence on the
map F under consideration, and we will let W = {v, c} and Wn = {v, c}n
be the n-fold Cartesian product.
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Recall that σ =λ−1 where λ is the universal scaling factor.

Lemma 5.1. Let F ∈Ic	(ε̄), n�1, and w∈Wn. There exist C>0 and
a domain in C

2, depending only on 	 and ε̄, on which the holomorphic
map �nw is defined and ‖D�nw‖�Cσn.

Proof. In the notation from equation (3.4) we have:

H−1(x, y)= (φ−1
y (x), y) and F ◦H−1(x, y)= (x, φ−1

y (x)).

The map φ−1
y is uniformly contracting on a neighborhood of the inter-

val J , so that |∂φ−1
y /∂x| is bounded away from 1. On the other hand,

∂φ−1
y /∂y is comparable with ∂ε/∂y, which is small. It follows that the

maps ψv = H−1 ◦�−1 and ψc = F ◦ H−1 ◦�−1 uniformly contracts the
infinitesimal l∞-metric at least as strongly as �−1, that is, by a factor
σ(1+O(dist(F,F∗)).

Since RnF → F∗ exponentially fast, the maps φkwk ,wk ∈W , contract
the infinitesimal l∞ normal by a factor σ(1 + O(ρk)), where ρ ∈ (0,1).
Hence the compositions �nw of these maps are contracting by a factor
O(σn).

Fig. 3. The renormalization microscope.
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5.2. Pieces

Let us define B1
v ≡ B1

v (F ) = φ1
v(B) and B1

c ≡ B1
c (F ) = F(B1

v ). Then
F(B1

c )⊂B1
v . We will let Qn

w=B1
w(R

nF ), n∈Z+,w∈W . Let Q∞w stand for
the corresponding pieces for the degenerate limit map (4.1). Note that the
pieces Qn

w depend on F while the pieces Q∞w do not, and that the piece
Q∞c is in fact an arc on the parabola-like curve x=f∗(y) (see Fig.3).

Lemma 5.2. Let F ∈I c	(ε̄). The pieces Qn
v and Qn

c have disjoint pro-
jections to both of the coordinate axes. Moreover, they converge exponen-
tially, in the Hausdorff topology, to the pieces Q∞v and Q∞c , respectively.

Proof. The first statement follows easily from the definition of ren-
ormalization. The second one follows from the exponential convergence
RnF→F∗.

The sets Bnw ≡Bnw(F )=�nw(B), where w ∈Wn, will be called pieces.
They are closed topological disks. For each n∈N, there are 2n such pieces
and forming the nth-generation or nth-level pieces. Wn can be viewed as
the additive group of residues mod 2n by letting

w �→
n−1∑

k=0

wk+12k,

where the symbols v and c are interpreted as 0 and 1 respectively. Let
p : Wn→Wn be the operation of adding 1 in this group.

Lemma 5.3. (1) The above families of pieces are nested:

Bnwν ⊂Bn−1
w , w∈Wn−1, ν ∈W.

(2) The pieces Bnw,w∈Wn, are pairwise disjoint.

(3) Under F , the pieces are permuted as follows. F(Bnw) = Bnp(w)
unless p(w)=vn. If p(w)=vn, then F(Bnw)⊂Bnvn .

Proof. The first assertion holds by construction:

Bnwν =�nwν(B)=�n−1
w ◦φnν (B)⊂Bn−1

w .

The second follows by induction. For all maps under consideration we
have by Lemma 5.2 that B1

v (F ) and B1
c (F ) are disjoint. Assume that the

pieces of the nth generation are disjoint for all maps under consideration.
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This implies that the pieces Bn+1
wv ⊂B1

v ,w ∈Wn, are pairwise disjoint, as
they are images of the disjoint pieces Bnw(RF) by the map φ1

v . Applying
F , we see that the pieces Bn+1

wc ⊂B1
c ,w∈Wn, are pairwise disjoint as well.

The assertion follows because B1
c and B1

v are also disjoint.
Let us inductively check the third assertion. For n=1, we have

B1
c =F(B1

v ) and F(B1
c )=F 2(B1

v )⊂B1
v .

Consider now the pieces Bnw(RF),w∈Wn, of level n for RF . Assume
inductively that they are permuted by RF as required. Then the pieces
Bn+1
vw =φ1

v(B
n
w(RF)),w∈Wn, are permuted in the same fashion under F 2.

Moreover, Bn+1
cw =φ1

c (B
n
w(RF))=F(Bn+1

vw ), and the conclusion follows.

Furthermore, Lemma 5.1 implies:

Lemma 5.4. There exists C > 0, depending only on 	 and ε̄, such
that for all w∈Wn,diamBnw�Cσn.

Let

O≡OF =
∞⋂

n=1

⋃

w∈Wn

Bnw.

Let us also consider the diadic group W∞= lim←−W
n. The elements of W∞

are infinite sequences (w1w2 · · · ) of symbols v≡ 0 and c≡ 1 that can be
also represented as formal power series

w �→
∞∑

k=0

wk+12k.

The integers Z are embedded into W∞ as finite series. The adding machine
p :W∞→W∞ is the operation of adding 1 in this group. The discussion
above yields that the map F acts on the invariant Cantor set O as the
dyadic adding machine (as in the one-dimensional case, compare ref. 20):

Corollary 5.5. The map F |O is topologicaly conjugate to p :W∞→
W∞. The conjugacy is given by the following homeomorphism h :W∞→
O:

h :w= (w1w2 · · · ) �→
∞⋂

n=1

Bnw1···wn.
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Furthermore,

HD(O)� log 2
logλ

�0.73.

We call O the critical Cantor set9 of F . Let us finish this section with
a remark on the dependence of this Cantor set on F :

Lemma 5.6. The critical Cantor set OF ⊂	 moves holomorphically
as F ranges over Ic	(ε̄).

Proof. Each contraction �nw=�nw(F ),w∈Wn, has a unique attract-
ing fixed point αnw(F ). By the Implicit Function Theorem, this point
depends holomorphically on F .

By Lemma 5.5, any point of OF can be encoded as α∞w (F ), where
w = (w1,w2 · · · ) ∈W∞. Lemma 5.4 implies that αnw1...wn

(F )→ α∞w (F ) as
n→∞, at an exponential rate uniform in F . Since uniform limits of
holomorphic functions are holomorphic, α∞w (F ) depends holomorphically
on F .

Moreover, since the coding h :W∞→OF is injective, α∞w (F ) 
=α∞v (F )
if v 
=w, and the conclusion follows.

6. THE AVERAGE JACOBIAN

In this section we consider the average Jacobian b of an infinitely
renormalizable Hénon-like map with respect to the unique invariant mea-
sure supported on its critical Cantor set. It is shown that the characteristic
exponents of this measure are 0 and log b and that b is a natural param-
eter for infinitely renormalizable maps.

We continue to consider infinitely renormalizable Hénon-like maps
and assume, moreover, that they are diffeomorphisms. They are, however,
allowed to be complex. Lemma 5.1 and the standard distortion estimate
imply

Lemma 6.1 (Distortion Lemma). There exist constants C and ρ <1
such that for any piece Bnw and for any y, z ∈ Bnw,w ∈Wn the following
holds:

log
JacFk(y)
JacFk(z)

�Cρn, k=1,2, . . . ,2n.

9This Cantor set consists of the “critical points” of F . More precisely, we will show in
the forthcoming notes that generically O is the set of singularities of the unstable
lamination of F .
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Since F |O is the adding machine, it has a unique invariant measure
µ. Let us consider the average Jacobian with respect to this measure:

b= exp
∫

log JacF dµ.

Corollary 6.2. For any piece Bnw and any point z∈Bnw,

JacF 2n(z)=b2n(1+O(ρn)),

where ρ is as in Lemma 6.1.

Proof. Since

∫

Bnw

log JacF 2n dµ=
∫

O
log JacF dµ= log b,

there exists a point ζ ∈Bnw such that

log JacF 2n(ζ )= log b/µ(Bnw)=2n log b,

and the assertion follows from Lemma 6.1.

The two characteristic exponents, χ−�χ0, of the measure µ are given
by

Theorem 6.3. The characteristic exponents of µ are χ−= log b and
χ0=0.

Proof. Let Gn be the nth renormalization of F . This map is
smoothly conjugate to the restriction of F 2n to the piece Bnvn . Let µn be
the normalized restriction of µ to Bnvn , and let νn be the invariant mea-
sure on the critical Cantor set of Gn. Note that these two measures are
preserved by the conjugacy. Then

2nχ0=χ0(F
2n |Bnvn, µn)=χ0(Gn, νn)�

∫
log ‖DGn‖dνn�C,

since the maps Gn have uniformly bounded C1-norms.
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Hence χ0 �0. If χ0<0, both characteristic exponents of F would be
negative and it would then follow from the Pesin theory that µ is sup-
ported on a periodic cycle10 which is clearly not the case. Hence χ0= 0.
The formula for the other exponent now follows from the relation χ0 +
χ−= log b.

Let us now take a look at the dependence of the average Jacobian
on parameters. Consider a holomorphic one-parameter family of complex
Hénon-like maps Ft ∈Ic	(ε̄),

Ft : (x, y) �→ (f (x)− t εt (x, y), x), |t |<r, (x, y)∈	,

such that

(i) Ft are real for real t ;

(ii) εt (x, y)=γ (x, y)ψt (x, y), where ψt(x, y)=1+O(t);

(iii) ∂γ /∂y >0 on B and ∂γ /∂y 
=0 on 	.

Let us consider the complex Jacobian,

Jacc Ft =detDFt = t ∂εt
∂y
= t ∂γ

∂y
+O(t2).

By property (iii), it does not vanish for sufficiently small r, and hence Ft
are complex diffeomorphisms. Moreover, for real t , they preserve orienta-
tion of B.

Lemma 6.4. For sufficiently small r > 0, the average Jacobian bt ≡
b(Ft ), t ∈ (0, r), admits a holomorphic extension to the complex disk Dr .
Moreover,

b′(0)= exp
∫

O(f )

log
∂γ

∂y
dµ 
=0.

10Indeed, in this case the Pesin local stable manifold W = Ws
loc(x) (see e.g., ref. 23) of a

typical point x ∈O would be a neighborhood of x. Then for some big n,f n would be a
contracting map of W into itself, and the orbx would converge to an attracting cycle.
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Proof. We can define the average complex Jacobian by the following
explicit formula:

bc(Ft ) = exp
∫

Ot

log Jacc Ft dµt

= t exp
∫

Ot

log
∂γ

∂y
dµt · exp

∫

Ot

logψt(x, y) dµt ,

where µt is the Ft -invariant measure on the critical Cantor set Ot =
OFt . Since ψt = 1+O(t), there is a well defined holomorphic branch of
logψt(x, y) on the domain Dr ×	 which is positive on (−r, r)×B. Since
by Lemma 5.6 the Cantor set Ot moves holomorphically with t , the two
integrals on the right-hand side of the formula above depend holomorphi-
cally on t . Since the second factor in that product goes to 1 as t→0, the
result follows.

Thus, in the Hénon-like families as above, the average Jacobian b

can be used (consistently with the common intuition) as a parameter that
measures the distance to the reference unimodal map.

7. UNIVERSALITY AROUND THE TIP

This section is central in our paper. We prove here that the renormal-
izations of Hénon-like maps near the tip have the following shape:

RnF = (fn−b2na(x) y (1+O(ρn)), x),

where a(x) is a universal function associated with the unimodal fixed point
f∗. To establish this Universality Law, we study closely the Renormaliza-
tion Microscope constructed in Section 5. Lemma 7.6, Lemma 7.7, and
Corollary 7.10 are the main technical results of this section; they quantify
the tilting phenomenon mentioned earlier. These lemmas will also be cru-
cial in the next sections when the non-rigidity and the existence of critical
Cantor sets with unbounded geometry are established.

7.1. Some Universal One-Dimensional Functions

Recall that f∗ : I→ I stands for the one-dimensional renormalization
fixed point normalized so that f∗(c∗)=1 and f 2∗ (c∗)=−1, where c∗ ∈ I is
the critical point of f∗. We let J ∗c = [−1, f 4∗ (c∗)] be the smallest renormal-
ization interval of f∗, and we let s : J ∗c → I be the orientation reversing
affine rescaling. The smallest renormalization interval around the critical
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value is denoted by J ∗v = f∗(J ∗c )= [f 3∗ (c∗),1]. Then s ◦ f∗ : J ∗v → [−1,1] is
an expanding diffeomorphism. Let us consider the inverse contraction

g∗: I→J ∗v , g∗ =f−1
∗ ◦ s−1,

where f−1∗ stands for the branch of the inverse map that maps J ∗c onto
J ∗v . The function g∗ is the non-affine branch of the so-called “presentation
function” (see ref. 4 and references therein). Note that 1 is the unique fixed
point of g∗.

Let J ∗c (n)⊂ I be the smallest periodic interval of period 2n that con-
tains c∗ and J ∗v (n)⊂ I be the smallest periodic interval of period 2n that
contains 1.

Let Gn∗ : I→ I be the diffeomorphism obtained by rescaling affinely
the image of gn∗ . The fact that g∗ is a contraction implies that the follow-
ing limit exists

u∗ = lim
n→∞G

n
∗ : I→ I,

where the convergence is exponential in the C3-topology. In fact, this func-
tion linearizes g∗ near the attracting fixed point 1 (see, e.g., 17, Theorem
8.2).

Lemma 7.1. For every n�1

(1) J ∗v (n)=gn∗(I ),
(2) Rnvf∗ =Gn∗ ◦f∗ ◦ (Gn∗)−1. Moreover,

(3) u∗ ◦f ∗ =f∗ ◦u∗.

Proof. The proof of the first two items is by induction. Notice that
the definition of g∗ implies directly

f 2
∗ |J ∗v =g∗ ◦f∗ ◦ (g∗)−1.

Let hn : I→J ∗v (n) be the conjugation between the two infinitely renormal-
izable maps f 2n∗ |J ∗v (n) and f∗,

f 2n
∗ |J ∗v (n)=hn ◦f∗ ◦ (hn)−1.

Note, h1=g∗. A calculation shows,

hn+1=hn ◦g∗.
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To do this calculation, first notice that

J ∗v (n+1)=hn(J ∗v ).

Hence,

f 2n+1

∗ |J ∗v (n+1) =f 2n
∗ |J ∗v (n)◦f 2n

∗ |J ∗v (n+1)

=hn ◦f 2
∗ |J ∗v ◦ (hn)−1

= (hn ◦g∗)◦f 2
∗ ◦ (hn ◦g∗)−1.

Now, Rnvf∗ is obtained by rescaling f 2n∗ |J ∗v (n). In particular,

Rnvf∗ =Gn∗ ◦f∗ ◦ (Gn∗)−1.

This finishes the proof of items (1) and (2). The convergence of the
sequence Gn∗ to u∗ implies that Rnvf∗ converges. The limit has to be the
unique fixed point f ∗ of Rv. This finishes the proof of (3).

Notice that |J ∗c (n)|=σn and f∗(J ∗c (n))=J ∗v (n)=gn∗(I ). Hence,

Corollary 7.2.
dg∗
dx

(1)=σ 2.

Along with u∗, we consider its rescaling

v∗ : I→R, v∗(x)= 1
u′∗(1)

(u∗(x)−1)+1,

normalized so that v∗(1)=1 and
dv∗
dx

(1)=1.

Lemma 7.3. Let ρ ∈ (0,1),C > 0. Let us consider a sequence of
smooth functions gk : I→ I, k= 1, . . . , n, such that ‖gk − g∗‖C3 �Cρk. Let
gnk =gk ◦ · · ·◦gn, and let Gnk=ank ◦gnk :I→I , where ank is the affine rescaling
of Im gnk to I . Then ‖Gnk −Gk∗‖C2 �C1ρ

n−k, where C1 depends only on ρ

and C.

Proof. Let I0=I and Ij = [xj , yj ]⊂I such that gj (Ij )=Ij−1. Rescale
affinely the domain and image of gj : Ij→Ij−1 and denote the normalized
diffeomorphism by hj : [−1,1]→ [−1,1]. Let

I ∗j = [x∗j ,1]=gn−j∗ ([−1,1])
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and rescale the domain and image of g∗ : I ∗j → I ∗
j−1 and denote the

normalized diffeomorphism by h∗j : [−1,1]→ [−1,1]. Note that

h∗k ◦h∗k+1 ◦ · · · ◦h∗n→u∗,

where the convergence in the C2 topology is exponential in n− k. In the
following estimates we will use a uniform constant ρ < 1 for exponential
estimates. Let �xj =xj −x∗j and �yj =1−yj . Then

xj−1=g∗(x∗j )+g′∗(z) ·�xj +O(ρj ).

Hence, using a similar argument for �yj ,

|�xj |, |�yj |=O(ρj ).

Because, gj and g∗ are contractions we have

|Ij |, |I ∗j |=O(ρn−j ).

We will represent a diffeomorphism φ : I→J by its nonlinearity

ηφ= D
2φ

Dφ
.

Let ηj and η∗ be the nonlinearities of gj and g∗. Notice that

‖ηj −η∗‖C1 =O(ρj ).

Furthermore, let Ij : [−1,1]→ Ij and I
∗
j : [−1,1]→ I ∗j be the affine orienta-

tion preserving rescalings. Using this notation

ηj (Ij (x))=η∗(I∗j (x))+Dη∗(z) ·
(
Ij (x)− I

∗
j (x)

)
+O(ρj )

for some z∈ [Ij (x), I∗j (x)]. Hence,

ηj (Ij (x))=η∗(I∗j (x))+O(ρj ).
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The nonlinearities of hj and h∗j are given by

ηhj =|Ij | ·ηj (Ij ),

and similarly

ηh∗j =|I ∗j | ·η∗(I∗j ).

Now

|ηhj (x)−ηh∗j (x)|=O((|Ij |− |I ∗j |)+ρj · |I ∗j |).

Hence

|ηhj (x)−ηh∗j (x)|=
{

O(ρn−j ) : j � (n+k)/2,
O(ρj ) : j >(n+k)/2.

It follows that

n∑

j=k
‖ηhj −ηh∗j ‖C0 =O(ρn−k).

Note that we can estimate ‖ηhj ‖C1 by using

Dηhj =|Ij |2Dηhj (Ij ).

The resulting estimate allows to use a reshuffling argument, see Appendix
A, Lemma A.1, which finishes the proof of the Lemma.

7.2. Asymptotics of the �-Functions

Fix an infinitely renormalizable Hénon-like map F ∈ I	(ε̄) to which
we can apply Theorem 4.1. For such an F , we have a well-defined tip:

τ ≡ τ(F )=
⋂

n�0

Bnvn,

where the pieces Bnw are introduced in Section 5.2. Let us consider the tips
of the renormalizations, τk = τ(RkF ). To simplify the notations, we will
translate these tips to the origin by letting

�k≡φ1
v(R

kF ) (z+ τk+1)− τk.
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Denote the derivative of the maps �k at 0 by Dk ≡ Dk+1
k and

decompose it into the unipotent and diagonal factors:

Dk=
(

1 tk
0 1

)(
αk 0
0 βk

)
. (7.1)

Let us factor this derivative out from �k:

�k=Dk ◦ (id+sk),

where sk(z)= (sk(z),0)=O(|z|2) near 0. The convergence Theorem 4.1 and
the explicit expression for the �-functions (see (3.3) and Section 5.1) imply

Lemma 7.4. There exists ρ < 1 such that for k ∈ Z+ the following
estimates hold:

(1) αk=σ 2 · (1+O(ρk)), βk=−σ · (1+O(ρk)), tk=O(ε̄2k );
(2) |∂xsk|=O(1), |∂ysk|=O(ε̄2k );
(3) |∂2

xxsk|=O(1), |∂2
xysk|=O(ε̄2k ), |∂2

yysk|=O(ε̄2k ).

Note that since all the maps under consideration are holomorphic,
the bounds on their derivatives follow from the bounds on the maps them-
selves.

Let now

�nk =�k ◦ · · · ◦�n−1, Bnk = Im�nk .

Since by Lemma 5.1

diam(Bnk )=O(σn−k) for k<n,

we conclude

Corollary 7.5. Let k<n. For z∈Bn
k+1 we have

|∂xsk(z)|=O(σn−k),
∣∣∂ysk(z)

∣∣=O(ε̄2k ·σn−k).

Let us now consider the derivatives of the maps �nk at the origin:

Dnk =Dk ◦Dk+1 ◦ · · ·Dn−1.
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Since the unipotent matrices form a normal subgroup in the group of
upper-triangular matrices, we can reshuffle this composition and obtain:

Dnk =
(

1 tk
0 1

)(
(σ 2)n−k 0
0 (−σ)n−k

)
(1+O(ρk)). (7.2)

Factoring the derivatives Dnk out from �nk , we obtain

�nk =Dnk ◦ (id+Snk), (7.3)

where Snk(z)= (Snk (z),0)=O(|z|2) near 0.

Lemma 7.6. For k<n, we have

(1) |∂xSnk |=O(1), |∂ySnk |=O(ε̄2k );
(2) |∂2

xxS
n
k |=O(1), |∂2

yyS
n
k |=O(ε̄2k ), |∂2

xyS
n
k |=O(ε̄2k σ n−k).

Proof. Let

znk+1=
(
xn
k+1
yn
k+1

)
=�nk+1(z)

By (7.2) and (7.3),

xnk+1 = K1 (σ
2)n−k−1 (x+Snk+1(x, y))+K2 tk (−σ)n−k−1 y,

yk+1
n = K3 (−σ)n−k−1 y,

where Ki =Ki(k, n)=O(1) (and the constants Ki below have the same
meaning).

Moreover, since

Dnk ◦ (id+Snk)=�nk = �k ◦�nk+1=Dk ◦ (id+sk)◦�nk+1

= Dnk ◦ (id+Snk+1)+Dk ◦ sk ◦�nk+1,

we obtain

Snk (z)=Snk+1(z)+K4 (λ
2)n−k−1 sk(z

n
k+1)

(recall that λ=σ−1).
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The proof proceeds by relating the partial derivatives of Snk to the
derivatives of Sn

k+1 and sk. For instance, by differentiating the last equa-
tion taking into account the above expressions for xn

k+1 and yn
k+1, we

obtain

∂Snk

∂y
=

(
1+K5

∂sk

∂x

)
∂Sk+1

n

∂y
+K6 tk (−λ)n−k−1 ∂sk

∂x
+K7 (−λ)n−k−1 ∂sk

∂y
,

where the partial derivatives of sk are computed at zn
k+1. Now Corol-

lary 7.5 implies

∣∣∣∣
∂Snk

∂y

∣∣∣∣� (1+O(ρn−k))
∣∣∣∣
∂Sn

k+1

∂y

∣∣∣∣+C ε̄2k ,

and hence for all k<n,

∣∣∣∣
∂Snk

∂y

∣∣∣∣�C ε̄
2k ,

as was asserted. The bound for ∂Snk /∂y is obtained in a similar way.
Since the functions Snk are holomorphic and defined on a fixed

domain, the first two bounds on the second derivatives follow. However,
the bound on the mixed derivative does not follow from this general rea-
soning. Differentiating ∂Snk /∂y (taking into account the expressions for
xn
k+1 and yn

k+1), we obtain

∂2Snk

∂xy
=

(
1+K5

∂sk

∂x

)
∂2Sn

k+1

∂xy

+
(

1+ ∂S
n
k+1

∂x

)
(σ 2)n−k−1 ∂

2sk

∂x2

(
K8

∂Sn
k+1

∂y
+K9 tkλ

n−k−1
)

+K10

(
1+ ∂S

n
k+1

∂x

)
(−σ)n−k−1 ∂

2sk

∂xy
,

where the partial derivatives of sk are calculated at xn
k+1. Using Corol-

lary 7.5 and the previous estimates on the first partial derivatives of Snk ,
we obtain

∣∣∣∣∣
∂2Snk

∂xy

∣∣∣∣∣� (1+O(ρn−k)) ·
∣∣∣∣∣
∂2Sn

k+1

∂xy

∣∣∣∣∣+C · ε̄
2k ·σn−k.
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Hence,

∣∣∣∣∣
∂2Snk

∂xy

∣∣∣∣∣�C · ε̄
2k ·σn−k.

We are now ready to describe the asymptotical behavior of the �-
functions using the universal one-dimensional functions from Section 7.1.
Let us normalize the function v∗ so that it fixes 0 rather than 1:

v∗(x)=v∗(x+1)−1.

Lemma 7.7. There exists ρ <1 such that for all k<n and y ∈ I ,

∣∣id+Snk (·, y)− v∗(·)
∣∣=O(ε̄2k ·y+ρn−k)

and
∣∣∣∣1+

∂Snk

∂x
(·, y)− ∂v∗

∂x
(·)

∣∣∣∣=O(ρn−k).

Proof. By Lemma 7.6,

∣∣∣∣∣
∂2Snk

∂yx

∣∣∣∣∣=O(ε̄2k σ n−k)=O(σn−k)

and
∣∣∣∣
∂Snk

∂y

∣∣∣∣=O(ε̄2k ).

Hence it is enough to verify the desired convergence on the horizontal sec-
tion passing through the tip:

distC1(id+Snk (·,0), v∗(·))=O(ρn−k).

Let us normalize g∗ so that 0 becomes its fixed point with 1 as
multiplier:

g∗(x)= g∗(x+1)−1
g′∗(1)

.
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Now, id+Snk (·,0) is the rescaling of �nk (·,0) normalized so that the fixed
point 0 has multiplier 1. By Theorem 4.1,

distC3(id+sk(·,0),g∗(·))=O(ρk).

Hence, by Lemma 7.3,

distC1(id+Snk (·,0),gn−k∗ (·))=O(ρn−k).

Since gn→ v∗ exponentially fast, the conclusion follows.

Proposition 7.8. There exists a coefficient aF ∈R and an absolute
constant ρ ∈ (0,1) such that

∣∣∣(x+Sn0 (x, y))− (v∗(x)+aF y2)

∣∣∣=O(ρn).

Proof. The image of the vertical interval y �→ (0, y) under the map
id+Sn0 is the graph of a function wn : I→R defined by

wn(y)=Sn0 (0, y).

By the second part of Lemma 7.7 we have

∣∣(x+Sn0 (x, y))− (v∗(x)+wn(y))
∣∣=O(ρn).

Let us show that the functions wn converge to a parabola. The identity

Dn+1
0 ◦ (id+Sn+1

0 )=�n+1
0 =�n0 ◦�n=Dn0 ◦ (id+Sn0)◦Dn ◦ (id+sn),

implies

Sn+1
0 = sn+D−1

n ◦Sn0 ◦Dn ◦ (id+Sn),

so that

wn+1(y)= sn(0, y)+ 1
αn
Sn0 (αnsn(0, y)+βntny, βny), (7.4)
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where αn,βn and tk are the entries of Dn, see equation (7.1). The estimate
of ∂ysn from Lemma 7.4 implies

sn(0, y)= eny2+O(ε̄2ny3), (7.5)

where en=O(ε̄2n). The estimate of ∂2
xyS

n
0 from Lemma 7.6 implies:

∂Sn0

∂x
(0, y)=O(ε̄2ny).

Hence

Sn0 (αnsn(0, y)+βntny, βny)
=Sn0 (0, βny)+

∂Sn0

∂x
(0, βny)(αnsn(0, y)+βntny)+O(ε̄2ny3)

=Sn0 (0, βny)+qny2+O(ε̄2ny3)=wn(βny)+qny2+O(ε̄2ny3),

where qn=O(ε̄2n). Incorporating this and (7.5) into (7.4), we obtain

wn+1(y)= 1
αn
wn(βny)+ cny2+O(ε̄2ny3),

where cn=O(ε̄2n). Writing wn in the form

wn(y)=any2+An(y)y3,

we obtain

an+1= β
2
n

αn
an+ cn

and

‖An+1‖� |βn|
3

αn
‖An‖+O(ε̄2n).

Now the first item of Lemma 7.4 implies that an→ aF and ‖An‖→ 0
exponentially fast.
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7.3. Universality

We are ready to prove the main positive result of this paper:

Theorem 7.9 (Universality). For any F ∈ I	(ε̄) with sufficiently
small ε̄, we have

RnF = (fn(x)− b2n a(x) y (1+O(ρn)), x ),

where fn→f∗ exponentially fast, b is the average Jacobian, ρ ∈ (0,1), and
a(x) is a universal function. Moreover, a is analytic and positive.

Proof. Let Fn ≡RnF = (fn − εn, x). The function �n ≡�nvn conju-
gates the renormalization Fn to the iterate F 2n on the piece Bn ≡ Bnvn .
(Here �n is the original �-function rather than the normalized one, �n0 .)
According to the chain rule,

∂yεn(z) = JacFn(z)= JacF 2n(�n(z))
Jac�n(z)

Jac�n(Fnz)

=b2n Jac�n(z)
Jac�n(Fnz)

(1+O(ρn)), (7.6)

where the last equality follows from Lemma 6.2.
Let Dn ≡Dn0 ,Sn ≡ Sn0, S

n ≡ Sn0 . Let us consider affine maps T n : z �→
z− τn and Ln :z �→ (Dn)−1(z− τ) as local charts on B and Bn respectively.
Various maps presented in these local charts will be written in the bold-
face, so that

Fn=T n ◦Fn ◦ (T n)−1, �n≡ id+Sn=Ln ◦�n ◦ (T n)−1.

Since affine maps do not distort the Jacobian, we have

Jac�n(z)
Jac�n(Fnz)

= Jac �n(z)
Jac �n(Fnz)

= 1+ ∂xSn(z)
1+ ∂xSn(Fnz)

, (7.7)

where z=T z.
By Lemma 7.7,

1+ ∂xSn→ v′∗ (7.8)

exponentially fast. By Theorem 4.1, τn→τ∞≡ (c∗,1) exponentially fast, so
that Tn converges exponentially to the translation T∞ : z �→ z− τ∞. Apply-
ing Theorem 4.1 once again, we conclude that Fn→ (f∗, x) exponentially
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fast, where f∗(x)=f∗(x+1)−1. Putting this together with (7.7) and (7.8),
we conclude

Jac�n(z)
Jac�n(Fnz)

→ v′∗(x)
v′∗(f∗(x))

= v′∗(x)
v′∗(f∗(x))

≡a(x),

where z= (x, y),x= x− 1, and convergence is exponential. Since v∗ is an
analytic diffeomorphism, the function a(x) is analytic and non-vanishing.

Plugging the last formula into (7.6), we obtain

∂yεn(z)=b2n a(x) (1+O(ρn)).

Integration of this formula yields:

εn(x, y)= cn(x)+b2n a(x) y (1+O(ρn)),

and since ‖cn(x)‖ is super-exponentially small, it can be incorporated into
the unimodal term fn(x).

Corollary 7.10. The numbers tk defined by equation (7.2) satisfy

tk
−b2k .

Proof. Consider the map (�k ◦Hk)−1, where �k and Hk are used to
define Rk+1F . Recall

�k(x, y)=
(
sk(x)

sk(y)

)

and

Hk(x, y)=
(
fk(x)− εk(x, y)

y

)
,

where sk is an orientation reversing affine map with s
−1 as derivative.
Then

D−1
k =D�k ◦DHk=

( · −s∂yεk(τk)
0 ·

)
.
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The representation of Dk from (7.1) gives

(
1 −tk
0 1

)
=

(
αk 0
0 βk

)( · −s∂yεk(τk)
0 ·

)
.

This implies

tk=αk · s · ∂yεk(τk),

where s
−1. Now equation (7.6) and Lemma 7.4(1) imply

tk
−∂yεk(τk)=− JacFn(τk)
−b2k .

8. AFFINE RESCALING AND QUADRATIC CHANGE OF VARIABLE

The renormalization procedure described in the previous sections dif-
fers in two ways from the standard unimodal period-doubling renormal-
ization. First, we are renormalizing around the tip of the Hénon map
which becomes the critical value in the degenerate case. Secondly, we use
non-linear changes of coordinates �n to define RnF . This was necessary
for the renormalizations to be Hénon-like maps again. In this section we
will show that in fact, a quadratic change of coordinates can be used
to produce renormalizations converging to a degenerate universal map.
(However, affine rescalings would not be sufficient!) This universal map is
not the usual fixed point of renormalization around the critical point, but
rather the fixed point of renormalization around the critical value.

Let us now introduce the promised quadratic change of coordinates.
Take an infinitely renormalizable F ∈ I	(ε̄) with sufficiently small ε̄, so
that the results from Section 7 apply to the maps �n0 . As in that section,
let us consider translations T n :z �→z−τn (where τn is the tip of Fn≡RnF ),
and the affine local charts

Ln0= (Dn0 )−1 ◦T 0 :Bn→R
2.

Let us represent the maps Fn and �n in these charts:

Fn=T n ◦Fn ◦ (T n)−1, �n= id+Sn0=Ln0 ◦�n ◦ (T n)−1.

Let us define the nth-affine renormalization of F as follows:

RnaffF =Ln0 ◦ [F 2n |Bn]◦ (Ln0)−1=�n ◦Fn ◦ (�n)−1.
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Fig. 4. Changes of coordinates.

Note that the domain of the nth-affine renormalizations is the Im �n.11

We also let T∞ : z �→ z−1 and

F∗ =T∞◦F∗ ◦T −1
∞ .

By Proposition 7.8, the maps �n converge to

V∗,aF : (x, y) �→ (v∗(x)+aF y2, y),

exponentially fast. Furthermore, by Theorem 4.1, Fn→ F∗ exponentially
fast. Hence

Theorem 8.1. Let F ∈ I	(ε̄) be infinitely renormalizable with suffi-
ciently small ε̄. Then

RnaffF→V∗,aF ◦F∗ ◦V−1
∗,aF

exponentially fast.

11Note that Rnaff is not the n-fold iterate of some Raff .
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Consider the quadratic change of coordinates QF : R2→R
2,

QF : (x, y) �→ (x−aF y2, y),

and define Hn :Bn→R
2 as the composition:

Hn=QF ◦Ln0 .

Conjugating F 2n by these quadratic changes of variable, we obtain the
desired renormalizations:

RnqdF =Hn ◦F 2n ◦H−1
n .

Theorem 8.2. Let F ∈ I	(ε̄) be infinitely renormalizable with suffi-
ciently small ε̄. Then

RnqdF(x, y)→ (l ◦f ∗ ◦ l−1(x), v−1
∗ (x))

exponentially fast, where l(x)= (x−1)/u′∗(1).

Proof. Let V∗ =V∗,0. Proposition 7.8 tells us that

QF ◦�n→V∗

exponentially fast. This implies that

Rnqd = (QF ◦�n)◦Fn ◦ (QF ◦�n)−1→V∗ ◦F∗ ◦V−1
∗

exponentially fast. Applying Lemma 7.1(3) and the relation between u∗
and v∗, we obtain

V∗ ◦F∗ ◦V−1
∗ : (x, y) �→ (l ◦f ∗ ◦ l−1(x), v−1

∗ (x)),

and the theorem follows.

Remark 8.1. In the forthcoming Part II we will construct the stable
manifold Ws(τF ) at the tip τF and will show that the number aF is equal
to its curvature at τF .
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Remark 8.2. The horizontal width of the box Bn is proportional to
the square of its vertical size. This box, a narrow strip containing the tip,
is aligned along Ws(τF ). Any affine change of coordinates which brings
this box roughly to the unit size is boundedly related to the affine map Ln0.
In the case when aF 
= 0, these scalings are not capable to “unbend” the
boxes Bn. (As a model, notice that the rescaling of the parabola x= ay2

by a linear map (x, y) �→ (σ 2x, σy) does not change the curvature a.) Thus,
the renormalizations obtained by affine changes of variable will always
remember the curvature aF . Hence they cannot have a universal limit.

9. NON-EXISTENCE OF CONTINUOUS INVARIANT LINE FIELDS

In this section, F ∈H	(ε̄) stands for an infinitely renormalizable non-
degenerate Hénon-like map to which the results of Section 4 apply. Then
by the results of Section 5, it possesses the Cantor attractor O=OF on
which it acts as the adding machine. We will show that F does not have
continuous invariant line fields on O. This has several interesting conse-
quences:

• Contrary to a common intuition, the attractor O does not lie on
a smooth curve.

• The SL(2,R)-cocycle

z �→DF(z)/
√

JacF(z) (9.1)

is not uniformly hyperbolic over O. By Theorem 6.3, it has non-vanish-

ing characteristic exponents ±1
2

log b, so it is non-uniformly hyperbolic. It
seems to be the first example of a non-uniformly hyperbolic SL(2,R)-co-
cycle over the adding machine.

Lemma 9.1. If F has a continuous invariant line field on OF then
there exists n0 � 1 such that for any n�n0, the renormalization RnF has
a continuous invariant direction field on ORnF .

Proof. Note first that any continuous F -invariant line field on O=
OF can be pulled back to a continuous invariant line field on ORnF for
any renormalizations RnF .

Furthermore, since the set O is totally discontinuous, any continuous
invariant line field on it can be continuously orientated. Then there exist a
partition of O into two clopen sets O+ and O− such that F |O+ preserves
the orientation of the field, while F |O− reverses it. Since the pieces Bnw
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uniformly shrink as n→∞, for n large enough each Bnw∩OF is contained
either in O+ or in O−. Hence F 2n |Bnvn either preserves or reverses the ori-
entation of the line field. It follows that the renormalization RnF either
preserves or reverses the induced orientation of the line field on ORnF . In
either case we conclude that the next renormalization, Rn+1F , preserves
the induced orientation.

For any matrix

A=
(
a −δ
1 0

)
, δ >0, (9.2)

let us consider its induced action on the circle S1 of directions in R
2

parametrized by the angle θ . (We will keep the same notation, A, for the
induced action.) Let L and R stand for the left- and right-hand semi-cir-
cles of S1, while U and D stand for the upper and lower semi-circles. Then
A(R)=U, A(L)=D, and in the projective coordinate t=x/y=ctg θ both
maps, A :R→U and A :L→D, assume the form

t �→a− δ
t
. (9.3)

For α∈ (0, π/2), let us consider two symmetric direction cones:

C+α = (α,π −α)≡{θ ∈S1 : α� θ �π −α}, C−α =−C+α .

Lemma 9.2. There exists an angle α ∈ (0, π/2) with the following
property. Let X= {Fn(z0)}∞n=−∞ be any two-sided orbit of F in O, and
let z �→θ(z) be an invariant direction field over X. Then there exist points
z± ∈X such that θ(z±)∈C±α .

Proof. Let us write the differential of F as in (9.2):

Az≡DF(z)=
(
a(z) −δ(z)

1 0

)
.

Let ā = maxz∈O |a(z)|. Without loss of generality we can assume that
δ(z)< ā everywhere (replacing F by its renormalization if needed). Let

κ=max{2|ā|, 1}, α=arcctg κ ∈ (0, π/4].
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We let Qi, i=1, . . . ,4, be the four quadrants in S1:

Q1= [0, π/2], . . . ,Q4= [3π/2,2π ].

Assume that θ(z) 
∈C+α for any z∈X.
Note that Az[0, α]⊂C+α for any z∈O. Indeed, in the projective coor-

dinate t=ctg θ , the cone C+α is given by equation |t |�κ. By (9.3), we have:
| ctgAz(0)| = |a(z)|<κ so that Az(0)∈C+α . If Az(α)<π/2, then obviously
Az(α)∈C+α as well. Otherwise by (9.3) we have

| ctgAz(α)|� | ctgAz(π/4)|= |a(z)− δ(z)|�2|ā|�κ,

and thus Az(α)∈C+α again.
By invariance of the direction field, we conclude that θ(z) 
∈ [0, α] for

z∈X. Hence θ(z) 
∈Q1 for z∈X.
Since Az(Q4)= [0,Az(0)]⊂C+α ∪Q1, we conclude that θ(z) 
∈Q4.
At this point we already know that θ(z)∈ [π −α, π ]∪Q3≡P for z∈

X. But then

θ(z)=AF−1z(θ(F
−1z))⊂D, z∈X,

and hence θ(z)∈P ∩D=Q3.
By replacing F with its renormalization, we can bring it arbitrary

closely to the degenerate fixed point F∗. Thus, we can assume that the
Cantor attractor OF is close to OF∗ in the first place, which implies
(together with minimality of OF ) that a(z)= f ′(z)− ∂xε(z) < 0 for some
z∈X. But then Az(Q3)⊂Q4 for this point z, and we arrive at a contra-
diction.

We have proved the assertion for the positive cone C+α . The one for
the negative cone follows by central symmetry of the cocycle.

Proposition 9.3. There are no continuous invariant direction fields
on OF .

Proof. Suppose there exists a continuous invariant direction field on
OF . Then there exists such a field for every renormalization. By Lemma
9.2, for each n we can find a pair of points zn, ζn∈ORnF such that θ(zn)∈
C+α while θ(ζn)∈C−α .

Now project these points to the box Bnvn by the maps �n making use
of equation (7.2) and Lemma 7.6. We obtain two sequences of points, ẑn
and ζ̂n, converging to the tip τF . The direction field at ẑn points upward at
angle θ(zn)=π/2+O(bF ) while the direction field at ζ̂n points downward
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at angle θ(ζn)=−π/2+O(bF ). Thus, the direction field is not continuous
at the tip of F .

Lemma 9.1 and Proposition 9.3 imply the desired:

Corollary 9.4. The map F does not have a continuous invariant line
field on the critical Cantor set OF .

It immediately yields:

Theorem 9.5. The map F is not partially hyperbolic on OF in the
sense that the contracting and neutral line fields corresponding to the
characteristic exponents log b and 0 (see Theorem 6.3) are discontinuous.

Theorem 9.6. The SL(2,R)-cocycle (9.1) is non-uniformly hyper-
bolic over O.

Theorem 9.7. There are no smooth curves containing OF .

Proof. If C is a smooth curve containing OF , then its tangent lines
l(z) give us a continuous line field on OF . Since OF does not have isolated
points,

l(z)= lim
ζ→z

l(z, ζ ),

where l(z, ζ ) is the line passing through z and ζ ∈OF , ζ 
=z. It follows that
the line field l(z) is invariant over OF , contradicting Corollary 9.4.

10. NON-RIGIDITY OF THE CRITICAL CANTOR SET

We will show that the invariant Cantor set O of an infinitely renorm-
alizable Hénon-like map is not rigid. In fact, there is a definite upper
bound smaller than 1 on the Hölder exponent of the conjugacy between
two such Cantor sets of any two Hénon-like maps with different average
Jacobians.

Theorem 10.1. Let F and F̃ be two infinitely renormalizable
Hénon-like maps with average Jacobian b and b̃ resp. Assume b>b̃. Let φ be
a homeomorphism which conjugates F |OF

and F̃ |O
F̃

with φ(τ(F̃ ))= τ(F ).
Then the Hölder exponent of φ is at most 1

2 (1+ ln b/ ln b̃).

Proof. We let Fk = RkF be the k-fold renormalization, vk = τ(Fk)
be its tip, ck = (Fk)−1(vk) be its “critical point”, and ck+nk =�k,k+n(ck+n)
with ψk,k+n=ψn(Fn). Furthermore, let wk =Fk(vk) and zk+nk =Fk(ck+nk ),
see Fig. 5. We will mark the corresponding objects of F̃ with the tilde.
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For large renormalization levels k�1, we have: b2k� b̃2k . Choose now
the scale n=n(k)�1 satisfying

σn+1 � b̃2k <σn.

Let �x̃ and �ỹ be the differences between the x- and y-coordinate
of the points ṽk and c̃k+nk . Representation (7.2), Lemma 7.6 and Corol-
lary 7.10 imply

|�ỹ|
σn

and

|�x̃|=O(σ 2n+ b̃2k · |�ỹ|)=O(σ 2n).

Applying F̃k to these points using the Universality Theorem 7.9, we obtain

dist(z̃k+nk , w̃k) =O
(
|�x̃|+ |�ỹ| · ∂εk

∂y

)

=O(σ 2n+σnb̃2k )=O(σ 2n)

(Notice that F̃k has compressed the vertical distance between ṽk and c̃k+nk

to make it comparable with the horizontal distance.)
Consider now points Z̃k+nk = �k(z̃k+nk ) and W̃k = �k(w̃k) in the

domain of F̃ . By Lemma 5.1, we have

dist(W̃k, Z̃
k+n
k )=O(σ 2n+k).

Let us now estimate the distance between the corresponding points
for F . For the same reason as above, we have: |�y| 
 σn. Furthermore,

Fig. 5.



654 De Carvalho et al.

since the tilt of the box Bn+kk is of order b2k (by Corollary 7.10), we obtain
for some γ1, γ2>0:

|�x|�γ1

(
b2k |�y|−σ 2n

)
�γ2 b

2k σ n,

where the last estimate uses that b2k�σn. Hence

|π2(wk)−π2(z
k+n
k )|= |�x|�γ2 b

2k σ n,

where π2 stands for the vertical projection. Using representation (7.2) and
Lemma 7.6 once again, we obtain for some γ3>0

dist(Wk,Z
k+n
k )�γ3 σ

k+nb2k

Any Hölder exponent α>0 for the conjugating homeomorphism has
to satisfy

dist(Wk,Z
k+n
k )�C (dist(W̃k, Z̃

n
k ))

α.

Hence

σk b̃2k b2k �C
(
σk b̃2k b̃2k

)α

which implies the asserted bound:

α� 1
2

(
1+ ln b

ln b̃

)
.

Corollary 10.2. Let F be an infinitely renormalizable Hénon-like
map with the average Jacobian b and F0 be a degenerate infinitely renorm-
alizable Hénon-like map. Let φ be a homeomorphism which conjugates
F |OF

and F0|OF0
with φ(τ(F0))= τ(F ). Then the Hölder exponent of φ

is at most 1
2 .
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11. GENERIC UNBOUNDED GEOMETRY

An infinitely renormalizable Hénon map has bounded geometry if

diam(Bnwν)
dist(Bnwv,B
n
wc)

for n�1 and w∈Wn−1 and ν ∈W . A slight modified version of this defi-
nition would require

diam(Bnwν ∩O)
dist(Bnwv ∩O,Bnwc ∩O).

The following theorem holds for both definitions, with the same proof:

Theorem 11.1. Let Fb, b∈ [0,1], be a family of infinitely renormaliz-
able Hénon-like maps parameterized by the average Jacobian, that is, bFb=
b. Then for some b0>0, the set of parameter values for which Fb does not
have bounded geometry contains a dense Gδ subset in the interval [0, b0].

Proof. Let us take b̄ >0 so small that the estimates of Section 7 on
�k,n hold for all Fb with b∈ [0,2b̄]. For n>k�1, let us consider the boxes
Bnk =�k,n(B) in the domain of Fk≡RkF , and let

Pnk =�k,n−1(Fn−1(B
n
n−1)).

12

Note that Bnk ∪ Pnk ⊂Bn−1
k . As in Section 7.2, τk = τ(Fk) stands for

the tip of Fk. Let us also consider some point ck ∈ Pk moving continu-
ously with the parameter (for instance, we can take the “critical point”
ck= (Fk)−1(vk) of Fk), and let cnk =�k,n(cn)∈Bnk (compare Fig. 5).

Making use of representations (7.2) and (7.3), let us estimate the
relative horizontal positions of the points τk and cnk . Let

z= (x, y)= (id+Snk)(cn), z0= (x0, y0)= (id+Snk)(τn).

By Lemma 7.7, we have

x−x0= v∗(cn)− v∗(τn)+O(b̄2k +ρn−k),

12In notations of Section 5.2, Bnk =Bn−kvn−k (Fk),P
n
k =Bn−kvn−k−1c

(Fk).
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which is a negative number of order 1, provided k and n− k are suffi-
ciently big (�N ). Hence

π1(c
n
k )−π1(τk) = π1(D

n
k (z− z0))

= [σ 2(n−k)(x−x0)+ tk(−σ)n−k(y−y0)] (1+O(ρk))

Together with Corollary 7.10, the above estimates yield for even n−k:

π1(c
n
k )−π1(τk)=σ 2(n−k)(x−x0)[1−b2k σ−(n−k)rn,k] (1+O(ρk)),

(11.1)

where 0<r� rn,k �ρ uniformly in b.
Let us now take any parameter b− ∈ (0, b̄) and any integer k � N .

Let us find the biggest n such that n− k is even and σn−k >ρ(b−)2
k
. By

(11.1), for the map Fb− , the point cnk lies to the left of the tip τk. Let us
increase b− to a parameter b+ such that (b+)2

k =2r−1σn−k. Then for Fb+ ,
the point cnk lies to the right of the tip τk. Hence there exists a parameter
b∈ (b−, b+) for which ckn lies strictly below the tip τk.

Moreover,

b2k 
σn−k, (11.2)

and the hyperbolic distance between b and b− in the hyperbolic line R+ is
small: ln(b/b−)=O(2−k). Letting k run through all integers N,N + 1, . . .,
we obtain a dense set of parameters b∈ (0, b̄) for which the point cnk lies
strictly below the tip τk for some k, n. It follows that there is a open and
dense subset �k⊂ (0, b̄) of parameters for which some point cnk ∈Pnk 13 lies
strictly below the tip τk for some n>k. Hence for any parameter b in the
open Gδ-set �=∩�k, this happens for infinitely many levels k.

We are going to show that the geometry of the critical Cantor set
degenerates for b∈�. It is convenient to shift the level by 1, so that we
assume that b∈�k+1. Let wk and znk be the images of the points τk+1 and
cn
k+1 under the map Fk ◦�k,k+1 (which is equal to �1

c(Fk+1) in the nota-
tion of Section 5.1). Since the maps �1

c preserve the vertical foliation (see
Remark 5.1), the points wk and znk also lie one strictly above the other.

Since the point cn
k+1 lies strictly below τk+1 on distance of order σn−k,

the interval between the points �k,k+1(cn
k+1) and �k,k+1(τk+1) has length

13We keep the same notation for this point, though it is not necessarily the one chosen
above.



Hénon Renormalization 657

of order σn−k and slope of order −b2k (see Lemma 7.4). Hence the dis-
tance between the horizontal projections of these two points is of order
σn−kb2k . But it is equal to the distance between their Fk-images, znk and
wk. Thus,

dist(wk, znk )
σn−kb2k .

Applying Fk once more, we obtain two point on the same horizontal
line such that

dist(Fk(wk),Fk(znk ))
σn−k b2k+1
. (11.3)

Let us now estimate the sizes of the corresponding pieces. Let Q
stand for either Bnk or Pnk . By (7.2), Proposition 7.8 and Corollary 7.10, it
contains two points such that the interval joining them has length of order
σn−k and tilt of order b2k . Hence

|π1(Q)|�γ σn−kb2k

for some γ >0. It follows that both projections of F 2
k (Q) are at least that

big (up to a constant). We are interested only in the vertical size:

|π2(F
2
k (Q))|�γ σn−kb2k .

Comparing this with (11.3), we see that the distance between the points
Fk(wk) and Fk(znk ) is at least b2k times smaller than the vertical size of the
pieces F 2

k (B
n
k ) and F 2

k (P
k
n ) that contain these points.

Finally, we should bring these two pieces to the domain of F by the
map �k. Since this map contracts the horizontal distances stronger than
the vertical ones, the gap between the images of the pieces will be even
smaller compared to the size of the pieces (the gap will become at least
b2k σ k times smaller than the size of the pieces).

The conclusion follows.

12. HÖLDER GEOMETRY OF THE CRITICAL CANTOR SET

If P =Bn−1
σ , n�1 and σ ∈�n−1, is a piece of an infinitely renormaliz-

able Hénon-like map F ∈I	(ε̄) we call the distance g=dist(Bnσv,B
n
σc) the
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gap of the piece P . An infinitely renormalizable Hénon map has Hölder
bounded geometry if there exist α>0 and C>0 such that

gα �C ·diam(P )

for every piece P of F .

Theorem 12.1. Every infinitely renormalizable Hénon-like map F ∈
I	(ε̄), with sufficiently small ε̄, has Hölder bounded geometry.

The proof of this Theorem will be by induction in the size of the
pieces. The beginning of the induction is the following Proposition.

Proposition 12.2. There exist constants K,C>0 such that for every
F ∈I	(ε̄) with sufficiently small ε̄ and every piece P of F with gap g the
following holds. If

diam(P )�K ·bF

then

g�C ·diam(P ).

Remark 12.1. In the previous section we showed that the geometry
of OF might be unbounded. Proposition 12.2 states that this two-dimen-
sional phenomenon becomes observable only at a scale of the order of b.

The proof of this Proposition relies on the following Lemma for
which we need some notation. Given a piece P , let H and V stand for
its horizontal and vertical projections. Let

qP = |V ||H | .

The piece P is obtained by repeatedly applying contractions, say P =
�nω1ω2...ωn

(B). Let Pk=�nωkωk+1...ωn
(B) be the corresponding piece of Fk≡

RkF, k�n.

Lemma 12.3. For every K>0 there exists C>0 such that if P is a
piece of F with

diam(P )�K ·bF
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then

qk=qPk �C · 1
bF
,

for k�1.

Proof. The piece P is of the nth generation of F . Let 1�k�n and
s�k be maximal such that

Pk=�s−kvs−k (Ps)

(where only “critical value” contractions were used). Then

Ps =�n−scωs+1...ωn
(B).

Let

P ′ =�n−svωs+1...ωn
(B)⊂B1

v (Fs).

Note,

Fs(P
′)=Ps.

Let Hs,Vs and H ′, V ′ be the horizontal and vertical projections of Ps and
P ′ respectively. From Theorem 7.9, for some uniform A>0 and K1>0

K ·b�diam(Ps)� |Vs |+ |Hs |� |Vs |+A|H ′|+K1b
2s .

Because |Vs |= |H ′| we get

|H ′|�K3 ·b (12.1)

for some K3> 0. From Theorem 7.9 we get for some uniform a > 0 and
K4>0

|Hs |�a|H ′|−K4b
2s . (12.2)

Now 12.1 and 12.2 imply

qs = |Vs ||Hs | �
|H ′|

a|H ′|−K4b
2s
=O(1).
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From Proposition 7.8 and (7.2) we get

qk=O(1/σ s−k).

Using Lemma 5.1

bF � 1
K
·diam(P )� 1

K
·diam(Pk)

� 1
K
·diam(Ps) ·Cσs−k � C

K
·σ s−k.

And the Lemma follows.

Proof of Proposition 12.2. Let Pk be a piece (of some Fk) of gen-
eration n−k. Let Gh⊂H and Gv⊂V be the minimal closed intervals such
that Gh×V and H ×Gv do intersect the two pieces of the next generation
contained in Pk. Note, Gv (and Gh) is a degenerate interval if the pieces of
the next generation have intersecting vertical (horizontal) projections. The
following argument will show that this does not happen. Let

�hor
k,n =min

Pk

|Gh|
|H | ,

�ver
k,n=min

Pk

|Gv|
|V |

and

�k,n=min{�hor
k,n ,�

ver
k,n}.

Let Pk,n be the pieces of generation n−k of Fk and

Pc
k,n={P ∈Pk,n|P ∈B1

c (Fk)}

and

Pv
k,n={P ∈Pk,n|P ∈B1

v (Fk)}.

Also define

�
hor,c
k,n = min

Pk∈Pc
k,n

|Gh|
|H | ,

�
hor,v
k,n = min

Pk∈Pv
k,n

|Gh|
|H | .
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And similarly, define �ver,c
k,n and �ver,v

k,n . Observe, using the specific normal-
ization of Hénon-like maps (y′ =x) and the fact that the functions ψ1

v (Fk)

are affine in the vertical direction,

(1) �
ver,v
k,n =�ver

k+1,n,

(2) �
ver,c
k,n =�hor,v

k,n ,

(3) �
hor,c
k,n ��ver,v

k,n .

The last property follows from Lemma 5.3 (3). These relations imply

�k,n�min{�ver
k+1,n,�

hor,v
k,n }. (12.3)

Now we will express �hor,v
k,n in terms of �hor

k+1,n. Let P ∈Pk+1,n and Gh⊂H
and V be the corresponding intervals. Let P̂ =φk+1

v (P ) and Ĝh⊂ Ĥ . Then,
using Lemma 7.4 (7.1) and the tilt quantified in Corollary 7.10

|Ĝh|�Dg|Gh|−K1 · |V | ·b2k+1

and

|Ĥ |�Dh|H |+K1 · |V | ·b2k+1
,

where

Dg= ∂φ
k+1
v

∂x
(xg, y0),

Dh= ∂φ
k+1
v

∂x
(xh, y0)

with xg ∈ Gh,xh ∈ H appropriately chosen, y0 ∈ ∂V , and K1 > 0.
Lemma 7.4(3) and Lemma 5.1 gives

ln
Dg

Dh
=O(σn−k).

These estimates, together with Lemma 12.3 and the assumption that
diam(P )�K ·b, imply that for some constant K2,K3>0

|Ĝh|
|Ĥ | � |Gh||H | · exp(−K2 ·σn−k) ·

1−K3 ·b2k+1−1 · |H ||Gh|
1+K3 ·b2k+1−1

.



662 De Carvalho et al.

This implies

�
hor,v
k,n � e−K2σ

n−k

1+K3 ·b2k+1−1
·
[
�hor
k+1,n−K3 ·b2k+1−1

]
. (12.4)

Equations (12.3) and (12.4) imply

�k,n� e−K2σ
n−k

1+K3 ·b2k+1−1
·
[
�k+1,n−K3 ·b2k+1−1

]
. (12.5)

By iterating estimate (12.5) and using that �n−1,n
 1 we get m> 0 such
that

�0,n�m>0

for n�1. This implies Proposition 12.2.

The induction hypothesis (denoted by Indn, n�0) we will use to prove
Theorem 12.1 is the following. There exist αn>0 and constants C>0 and
K>0, independent of F and n�0, such that the condition

diam(P )�K ·b2n

on any piece P of F implies

gαn �C ·diam(P ).

Proposition 12.2 states that Ind0 holds with α0=1.
Assume that Indj holds for j � n. We are going to prove Indn+1.

Consider a piece Pn+1 of F with

diam(Pn+1)�K ·b2n+1
.

Because Indj holds for j � n we may assume without loss of generality
that diam(Pn+1)�K ·b2n . This piece is obtained by applying a contraction
φ1
c (RF) or φ1

v(RF) to a piece Pn of RF . Note that

diam(Pn)�diam(Pn+1)�K(b2)2
n

.
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Hence, if gn is the gap of Pn, Indn implies

gαnn �C ·diam(Pn).

Observe,

gn+1 �A ·b ·gn

for some constant A> 0. We need to find an estimate for αn+1 > 0 such
that

g
αn+1
n+1 �C ·diam(Pn+1). (12.6)

We may assume αn+1 �αn. The condition 12.6 holds if

(A ·b)αn+1 · (C ·diam(Pn))
αn+1
αn �C ·diam(Pn). (12.7)

Use the fact that for some L>0

diam(Pn)�L · 1
b
·diam(Pn+1)�

L

K
·b2n−1

to reduce the condition (12.7) to the next sufficient condition for (12.6).
Namely,

Aαn+1 � (C ·L)1−
αn+1
αn ·b(2n−1)·(1− αn+1

αn
)−αn+1 . (12.8)

Finally, this condition (12.8) reduces to the sufficient condition

−M� ln b ·
[(

1− αn+1

αn

)
· (2n−1)−1

]
,

where M>0 is some large constant. Now choose αn+1 such that

(
1− αn+1

αn

)
· (2n−1)=m

is constant but sufficiently large and one obtains αn+1 > 0 for which
Indn+1 holds. Moreover, the sequence αn>0 decreases to some α>0. This
finishes the proof of the Theorem 12.1.
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13. OPEN PROBLEMS

Let us finish with some further questions that naturally arise from the
previous discussion. The first two of them are probably very hard, while
others should be more tractable.

(1) Prove that F∗ is the only fixed point of the Hénon renormal-
ization R, and RnF → F∗ exponentially for any infinitely renormalizable
Hénon-like map F .

(2) Is it true that the trace of the unstable manifold Wu(F∗) by the
two-parameter Hénon family Fc,b : (x, y) �→ (x2+ c− by, x) is a (real ana-
lytic) curve γ on which the Jacobian b assumes all values 0<b<1. If so,
does this curve converge to some particular point (c,1) as b→1?

(3) How good is the conjugacy h : OF→OG when bF =bG?

(4) Is the conjugacy h : OF → OG always Hölder? An equivalent
question (due to Theorem 12.1) is whether the pieces Bnσ decay no faster
than exponentially in n? The answer is probably negative in general.

(5) Can OF have bounded geometry when bF 
= 0? If so, does this
property depend only on the average Jacobian bF ?

(6) Does the Hausdorff dimension of OF depend only on the average
Jacobian bF ? (This question was suggested by A. Avila.)

APPENDIX A: SHUFFLING

In this section we will briefly recall some analysis of long composi-
tions of diffeomorphisms of the interval. It is convenient to represent a C3

diffeomorphism φ : [−1,1]→ [−1,1] by its C1 nonlinearity

ηφ= D
2φ

Dφ
.

The following Lemma was used in Section 7.

Lemma A.1. (Shuffling). For every B>0 there exists K>0 such that
the following holds. Let φj ,φ∗j : [−1,1]→ [−1,1], j =1, . . . , n be C3 diffeo-
morphisms and let

�=φn ◦ · · · ◦φ2 ◦φ1

and

�∗ =φ∗n ◦ · · · ◦φ∗2 ◦φ∗1 .
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If

n∑

j=1

‖ηj‖C1 �B

and

n∑

j=1

‖η∗j‖C1 �B

where η(∗)j is the non-linearity of φ(∗)j , then

distC2(�,�
∗)�K

n∑

j=1

‖ηj −η∗j‖C0 .

This Lemma is a consequence of the Sandwich-Lemma 10.5 from
ref. 20. Here we will use a slightly different version of this Sandwich-
Lemma, whose proof is exactly the same as the proof for the original
formulation.

Lemma A.2. (Sandwich). For every B > 0 there exists K > 0 such
that the following holds. Let φj ,φ : [−1,1]→ [−1,1], j = 1, . . . , n be C3

diffeomorphisms and let

�=φn ◦ · · · ◦φk+1 ◦φk ◦ · · · ◦φ2 ◦φ1

and

�=φn ◦ · · · ◦φk+1 ◦φ ◦φk ◦ · · · ◦φ2 ◦φ1.

If

n∑

j=1

‖ηφj ‖C1 +‖ηφ‖C1 �B

then

‖η�−η�‖C0 �K‖ηφ‖C0 .
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The proof for the Shuffling-Lemma A.1 consists of sandwiching the
diffeomorphisms φ∗k ◦ φ−1

k between φk+1 and φk, k= 1, . . . , n. In this way
� is changed into �∗. To estimate the distance between these two diffeo-
morphism we need the following Lemma.

Lemma A.3. For every B>0 there exists K>0 such that the follow-
ing holds. Let φ,ψ : [−1,1]→ [−1,1] be C3 diffeomorphisms with

‖ηφ‖C0 �B.

Then

‖ηψ◦φ−1‖C0 �K · ‖ηψ −ηφ‖C0

and

‖ηψ◦φ−1‖C1 �K · ‖ηψ −ηφ‖C1 .

Proof. The Chain-rule for nonlinearities

ηψ◦φ(x)=ηψ(φ(x)) ·Dφ(x)+ηφ(x)

implies

ηφ−1(x)=−ηφ(φ−1(x)) ·Dφ−1(x).

Again the chain-rule gives

ηψ◦φ−1 =Dφ−1 ·
(
ηψ(φ

−1)−ηφ(φ−1)
)
.

Differentiation gives

Dηψ◦φ−1 = (Dφ−1)2 ·
(
Dηψ(φ

−1)−Dηφ(φ−1)
)

+D2φ−1 ·
(
ηψ(φ

−1)−ηφ(φ−1)
)
.

The bound ‖ηφ‖C0 �B gives a bound on ‖φ−1‖C2 and the Lemma follows.
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Now we are ready to prove the shuffling-Lemma A.1. The Lemmas
A.2 and A.3 imply the following estimate on the diffeomorphisms as
defined in Lemma A.1

‖η�−η�∗‖C0 �K
n∑

j=1

‖ηj −η∗j‖C0 ,

where K=K(B). One can integrate nonlinearities and obtain

φ(x)=2

∫ x
−1 e

∫ s
−1 ηφds

∫ 1
−1 e

∫ s
−1 ηφds

−1.

and

Dφ(x)=2
e
∫ x
−1 ηφds

∫ 1
−1 e

∫ s
−1 ηφds

.

Notice that the Sandwich-Lemma A.2 implies that

‖η�‖C0 ,‖η�∗‖C0 �K ·B.

This uniform bound and the two expressions above can be used to get the
desired estimate on the C2 distance between � and �∗ in A.1. We finished
the proof of the Shuffling-Lemma.

NOMENCLATURE

β0, β1 saddle fixed points of a Hénon-like map F , Section 3.4
b=bF average Jacobian of F , Section 6
Bnw=Bnw(F ) renormalization pieces of level n, Section 5.2
Dn
k derivative at the tip, Section 7.2

F(x, y)= (f (x), Hénon-like map, Section 3.2
−ε(x, y), x)

f∗ fixed point of the unimodal renormalization Rc,
Section 3.1

f ∗ fixed point of the unimodal renormalization Rv ,
Section 3.1

F∗ fixed point of the Hénon-like renormalization,
Section 4

H non-linear part of coordinate change, Section 3.5
H	 space of analytic Hénon-like maps, Section 3.3
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I	(ε) space of infintely renormalizable unimodal maps,
JacF =|∂ε/∂y| Jacobian of F , Section 3.2
λ the universal scaling factor, Section 3.1
� scaling part of coordinate change, Section 3.5
O=OF the critical Cantor set, Section 5.2
Rc renormalization operator near the “critical point”,

Section 3.1
Rv renormalization operator near the “critical value”,

Section 3.1
sk non-linear part of the coordinate change �k ,

Section 7.2
Snk non-linear part of the coordinate change �n

k ,
Section 7.2

σ =λ−1 the universal scaling factor, Section 3.1
tk tilt, Section 7.2
τ = τF tip, Section 7.2
UU space of analytic unimodal maps, Section 3.3
v∗ universal change of coordinates, Section 7.1

Various coordinate changes:
φkc,v Section 5.1
�nw Section 5.1
�k Section 7.2
�n
k Section 7.2

�n Section 7.3
�n Section 7.3
�k,n Section 10
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9. P. Cvitanović, Universality in Chaos. (Adam Hilger, Bristol, 1984).

10. E. Catsigeras, J. M. Gambaudo, and F. J. Moreira, Infinitely renormalizable diffeomor-
phisms of the disk at the boundary of chaos. Proc. Amer. Math. Soc. 126:297–304 (1998).

11. M. J. Feigenbaum, Quantitative universality for a class of non-linear transformations,
J. Stat. Phys. 19:25–52 (1978).

12. M. J. Feigenbaum, The universal metric properties of non-linear transformations, J. Stat.
Phys. 21:669–706 (1979).

13. E. de Faria, W. de Melo, and A. Pinto, Global hyperbolicity of renormalization for Cr

unimodal mappings, Preprint IMS at Stony Brook, # 2001/1, Ann. Math., in press.
14. J.-M. Gambaudo, S. van Strien, and C. Tresser, Hénon-like maps with strange attractors:
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